从概念上看看智能机器人的新范式:深度强化学习

   2016-08-30 科技小读佚名7070
核心提示:  近两年机器智能取得重大突破,像围棋九段高手李世石败北Alpha Go,DeepMind团队研发的机器人在Atari多项游戏上超越人类水平。
   近两年机器智能取得重大突破,像围棋九段高手李世石败北Alpha Go,DeepMind团队研发的机器人在Atari多项游戏上超越人类水平。这些突破主要得益于从基于深度学习的视觉、语音、语义感知到动作反馈的激励惩罚强化训练模式。本文从概念上分析深度强化学习的要点,部分摘于ICML 2016 Tutorial里的Deep Reinforcement Learning[1]的报告。

  强化学习,即机器人根据环境里动作得到的惩罚和激励去自动调整策略。通过训练,机器人学到一组策略:在环境状态S下应采取动作A,(可)能获得最大累积奖励V。

  强化学习有丰富的交叉学科背景,包括经济学、工程学、神经科学里的博弈论、优化控制,条件反射系统。

 

  深度学习,使用深度神经网络实现机器人的记忆,视觉感知,语音语义理解和生成。

 

  深度强化学习以深度学习做感知,强化学习训练策略,并且以深度神经网络作为策略载体。相比于传统的多模块组合,深度强化学习实现了从感知到控制的端到端直接训练,减少了模块间信息损失。

 

  最近两年在学术理论上,GoogleDeepMind团队在连续性动作控制[2],异步训练[3],训练框架[4],分布式训练[5]等都有重要突破,为智能机器人的研发奠定理论和实践基础。

 

  在特定任务的应用上,深度增强学习已有广泛实践尝试,例如流水线机器人。

 

  在集成应用上,深度强化学习在自动驾驶,聊天机器人[6][7]都有良好的前景。例如,使用分布式训练或异步训练,自动驾驶汽车可以多辆同时在各种环境学习,并且相互交换知识,加速学习过程。聊天机器人可以通过对话过程中用户的反馈来调整自己的语言表达,逐步成长。

  深度强化学习为智能机器人提供了新的计算范式:提供环境、激励和惩罚、神经网络结构即可训练得到最大化奖励的智能机器人。

 
举报收藏 0打赏 0评论 0
点击排行