后来,直到IEEE一382在1972年首次发布时,阀门驱动装置或阀门组件的抗地震限定要求才有一些规定。然而,那时它只是规定了阀门电动驱动装置的限定(在地震环境中)而对于弹性隔膜驱动装置,汽缸驱动装置,液压驱动装置等没有特别的限定标准。于1980年发布的IEEE一382改变了这种现象,它包括了全部各种驱动装置的限定标准IEEE一382—1990“阀门驱动装置安全条件IEEE标准”中说明“该规范适用于所有类型的动力驱动的阀门驱动装置”。
IEEE一344和IEEE一382是最为广泛被公认的关于阀门或阀门驱动装置抗地震的标准,还育许多别的标谁也被公布或是得到了不同的发展。然而,这些标准很难如上述两者那样得到广泛的承认,因为这些标准中很难使人对于他们的必要条件有清楚的理解,而几乎不能保证他们的技术和设计要求,这些标准被列到附录A中。
这些标准中的每一个都将阀门组件看成是一个独立的单位,关于阀门对装置在其上的管线系统或管线系统对阀门的影响都没有说明。因而.管线系统设计者就处于甚至在阀门被选择或买主选择之前就必须考虑在他们的管线系统中的阀门的动力学特性这样一个不公平的位置上。当然,阀门制造者也必须在管线系统定案之前详细说阀门的抗地震要求,这是一个制动装置一22一一管线系统设计着只有在知道阀门将怎样反应之后才能为他的管线系统中的阀门定型,而阀门制造者只有知道管线系统将怎样反应才能限定在个特别管线位置上的阀门。这样,阀门规范中的通用抗地震规范待以发展。
这些通用的规范是阀门制造者和管线系统设计者之间的一个折衷,阀门制造者同意排除从阀门回到管线系统的动力学反馈。它被要求这样做是因为阀门组件在一个可选择值上有其基本的自然频率.通常是33Hz。在这种方式下任何建筑或管线都被认为具有低于33Hz,否则就不能承受地震的共振谐率。这样将不会导致阀门的共振和其固有的放大。因此,管线系统的设计者是需在它的系统中考虑阀门的质量。作为回报,管线系统设计者同意限制成为阀门地震输入的管线系统的动态特性一达到某个值。这个值的上限成为阀门限定的输入加速度,依据建筑工程师的意见通常是3.og或45g,至今为止,阀门抗地震设计条件的,发展是从一般设计准则到工业的法规和标准。最后技术要求中要求一个具有自然频率大于331HZ和属于1~33Hz频率范围之内3.0g的或4.5g的输入加速度。
研究控制阀抗地震结构改进的最好方法是逐一研究它的主要零部件,这些部件见图1;它们是阀体、阀盖、与阀盖相连的驱动装置和装置驱动装置之上的驱动装置附件。
阀体:
阀体是必不可少的管线系统理,如果管线系统符合要求,阀门也必然符合要求。这正是ASME法规的编青所论述”的。根据该法规,如果管线和阀体都是根据法规所设计的,而制造者能显示出阀门中最弱的部分也比管线强度高,那么这阀门就认J是合格的。这主要应表现出阀门的剖面积和剖面膜数值至少要比管线的那些高10%。如果管线和阀门的材质不同,那就要考虑它们之间所能承受压力的差别。(根据ASMEIll、NCl/ND3S21)。
对于同样管线尺寸的阀门和管线来说,可以毫无疑问证明是符合要求时;典型的情况是阀门强度要比与之连接的管线高300%~400%,世当使用渐缩管或阀门比管线尺寸小2倍或更多时。就产生问题了。这个问题可以用几种方式减缓,一种简单的方式是将阀门内件面积缩减至与管线尺寸相同少这种简易的方式有其所取之处,因为用一个大尺寸的阀门就意味着更高的成本。另一个方法是从买主那了解管线负荷和施行应力分析。自然.施行应力分析也会增加生产成本,特别是如果应用计算机方法逐一限定的元件。第3种解决方式是用高压力系数的阀体 (也就是说用ANSl600级而不是用15Q级),这将 增大金属剖截面,使金属材料增加,但可能比用大尺寸阀门的成本要低。当然,这几种方式结合在一起可以达到最佳效果。