1-4钢铁的腐蚀
在金属材料中,钢铁的腐蚀无疑是其中最重要的,因为它使用的范围很广,影响也很大;举凡桥樑、机械、结构物或关系公共工程的建设,无不与钢铁材料有关。
基本上,钢铁材料的腐蚀现象,主要也是由于化学及电化学因素所引起,而其常见的形式有:直接氧化腐蚀、均匀腐蚀、伽凡尼腐蚀、穿孔腐蚀、间隙腐蚀、应力腐蚀、延晶腐蚀、浸蚀腐蚀、空洞腐蚀和磨擦腐蚀等,由于形式很多包含范围很多,包含均匀腐蚀、伽凡尼腐蚀、穿孔腐蚀、间隙腐蚀、应力腐蚀、和延晶腐蚀等。
1-4-1直接氧化腐蚀
高温或缺乏水份的情况下,铁的腐蚀型态将不同于常温下的反应,而直接与氧结合,其反应式:
4Fe+3O2 à 2Fe2O3 氧化铁
由于氧化铁并不够细緻,因此氧气仍可渗入,并形成FeO(氧化亚铁)和Fe3O4(四氧化三铁)等氧化物,这样的情况在钢的热轧或是热处理时常会发生,称为鳞皮。
1-4-2均匀腐蚀(Uniform attack corrosion)
当一种金属置于电介质(或电解质)中,金属的某部分区域会比其他区域更为"阳极",而且这些区域的位置会不时移动,有时也会週而復始,这样的现象使得腐蚀现象在各处均匀发生,称为均匀腐蚀。这种型态如平常我们所见的铁生銹即属之,金属的高温氧化或是镍的成雾状(fogging)也都是均匀腐蚀的例子。
1-4-3-1 均匀腐蚀的量测
均匀腐蚀的速率,通常可以用几种单位表示。国内外常用的有:每年侵蚀的公厘mm数、密尔mil数(mpy,mils penetration per year,1mil=1/1000吋=0.025mm)、和英寸数(ipy,inches penetration per year),但有时由于不易量度,也以损失的重量mdd (milligrams per square decimeter per day)或每年损失的重量再来推估mpy等其它各种数值。以钢为例,在海水中的腐蚀速率约为25mdd,相当于5mpy。
一般来说,腐蚀的初始速率常较最终速率为大,因此测定腐蚀速率时,要记录整个过程,以外插法可能会产生很大的错误。而材料如果腐蚀速率在1mpy以下为抗蚀性犟(outstanding),50mpy以上防蚀性转劣(poor),在200mpy以上则是无法接受(unacceptable)。
1-4-4 伽凡尼腐蚀(Galvanic corrosion)
这种腐蚀发生于两种不同金属或是合金接触,而能产生伽凡尼电池(Galvanic cell)的情况,常用金属材料在海水中的伽凡尼电位序。
较具阳极的金属易受到腐蚀。例如:在海洋工程中,以銲锡(铅-锡合金)銲接黄铜配件,因为黄铜的电位序较具阴极性,所以銲锡较易受腐蚀。再从合金的观点来比较,如果电池效应发生在两相合金上,例如:钢中具有肥粒铁相和雪明碳铁相,则因为肥粒铁相较阳极性,雪明碳铁相较阴极性,就会产生电化学腐蚀,因此可以说,几乎所有的两相合金其腐蚀抵抗力都较单相金属为差。
1-4-5 穿孔腐蚀(Pitting corrosion)
金属元件处于腐蚀环境中,由于位置的不同而使含氧量有浓淡之分,此时含氧浓度高之处为阴极,而含氧浓度低的地方为阳极,因而发生了腐蚀现象,这种电池效应又称为氧浓差电池(oxygen concentration cell)。而穿孔腐蚀是属于一种局部腐蚀,它发生的起始位置就都是在含氧浓度不均或是材质不均的位置。金属置于充气水中的孔蚀成长情形,它的发生首先是由于孔洞的底部氧不容易补充,缺氧的结果使得金属发生分解反应MàM++e-,而在孔洞上方的周围有较高浓度的氧,而发生还原反应O2+2H2O+4e-à4OH-,因此孔洞四周受到保护,而不会腐蚀。这样的现象如果发生在酸性的溶液中(例如:HCl),溶液中所含的Cl-离子便会向孔洞的位置集中,使得孔洞中的H+浓度增加,而增加阳极的反应速率:
M+Cl-+ H2OàMOH + H+Cl-
结果整个穿孔腐蚀的过程变成为自动催化的现象,而加速了整个腐蚀。
1-4-6间隙腐蚀(Crevice corrosion)
间隙腐蚀特别容易发生在机械元件接合的地方,例如金属埝圈或是铆接处。它也是属于一种电池效应,但是隙缝一般需在特定程度大小的范围内才会发生,例如:有足够的宽度可使容易进入,足够窄使容易可以停滞等,所以在应用上或工程上必须要小心,避免发生足以产生间隙腐蚀的环境。
间隙腐蚀的机构很类似穿孔腐蚀的情况,首先是均匀腐蚀,然后因氧浓淡电池会引起阳极反应(缺氧区)和阴极反应(富氧区),由于间隙内氧的并无法补充,因此阳极反应会继续在同一个位置进行,因此产生了严重的腐蚀结果。
在不銹钢发生间隙腐蚀的现象中,有氯离子Cl-存在是一个非常重要的因素,例如:在NaCl溶液中,不銹钢的间隙腐蚀,是先由于氧浓淡电池所产生,阳极反应在此时生成正离子M+。
Mà M++e-
接着因为缺氧,所以阳极反应持续进行,形成高浓度的M+,并与NaCl溶液中的Cl-,形成M+Cl-。
1-4-7 应力腐蚀(stress corrosion)
应力腐蚀是一种应力与腐蚀相互作用的结果,因为再材料受到局部应力或应力作用不平均时,受到高应力作用的区域会形成阳极,而受较低应力作用的区域则形成阴极,因此作用应力会使得腐蚀作用更为加速称谓应力电池(stress cells)。
应力腐蚀发生在冷加工的材料时,高度冷加工的区域会较低度冷加工的区域更具阳极性,另外在材料存在裂缝的情况下,也会造成应力腐蚀。所以材料在制造加工的过程,必须藉由热处理来降低其应力避免腐蚀,或是选用抗应力腐蚀的材料,例如:在海水环境中可以钛合金以取代不銹钢。在日常生活中,汽车板金经过敲击修整后会发生应力不均的现象,因而冷加工的部份较容易腐蚀,此部份必须由降低加工量或确实退火来防范。
1-4-8 延晶腐蚀(Intergranular corrosion)
又称为粒间腐蚀,是在金属晶界处发生局部腐蚀的现象。就电化学的观点来看,由于材料的晶粒为阴极,而晶界一般为阳极,因此在均匀腐蚀的情况下,晶界处的腐蚀性仍稍大于晶粒处,如果在特殊情况下,材料的晶界抗蚀元素又相对减少,延晶腐蚀的现象就会发生。
最显着的例子莫过于304不銹钢在銲接过程常发生的情况,这种不銹钢如果如果加热或冷却于450℃~900℃之间(又称为敏感化温度),在晶界就容易析出碳化铬(Cr23C6),而使得附近的铬量不足,发生"贫铬区"的现象,由于铬是不銹钢防蚀的主要元素,加上晶粒与晶界的电池效应,因此可以在短时间内就发生延晶腐蚀的现象。
1-5防蚀的方法
防止腐蚀最有效的方式是藉由暸解腐蚀机构与腐蚀的成因,再找出适当的防蚀方法。如前所述,发生腐蚀的主要原因包括电化学及化学作用,因此如果能阻止或抑制腐蚀的发生,诸如:选用耐蚀或适当处理的材料,使用涂料、腐蚀抑制剂将金属表面和其环境隔开,大量使用阴极防蚀以防止化学电池的发生,或是使阳极形成钝化层以保护内部金属,均是有效的方法。
1-5-1 材料的选择和处理
选择适当的材料是防蚀的基本方法,例如:在适当成本考虑下使用不銹钢或是其他耐蚀材料。
但是这样的材料也并不一定能防止腐蚀的发生,例如:沃斯田铁系的不銹钢料如果经由銲接或高温缓冷的过程,到达425℃附近,会在其晶界析出碳化铬,此后此区域将因缺乏铬而迅速发生腐蚀的现象(此种现象又称为不銹钢敏化现象),因此如果使用在这样的场合,配合适当的处理是必要的。此外,铸件在冷却过程发生的偏析现象会形成局部伽凡尼电池作用、材料经过冷加工所亦产生的应力腐蚀现象,都必须经由均质化退火、弛力退火等处理来防治腐蚀的发生。