1.铸造应力的产生
(1)热应力
铸件各部分的薄厚是不一样的,如机床床身导轨部分很厚,侧壁.筋板部分较薄,其横向端面如图一所示。铸后,薄壁部分冷却速度快收缩大,而厚壁部分,冷却速度慢,收缩的小。薄壁部分的收缩受到厚壁部分的阻碍,所以薄壁部分受拉力,厚壁部分受压力。因纵向收缩差大,因而产生的拉压也大。这时铸件的温度高,薄厚壁都处于塑性状态,其压应力使厚壁部分变粗,拉应力使薄壁部分变薄,拉压应力 ,随塑性变形而消失。
铸件逐渐冷却,当薄壁部分进入弹性状态而厚壁部分仍处于塑性时,压应力使厚壁部分产生塑性变形,继续变粗,而薄壁部分只是弹性拉长,这时拉压应力随厚壁部分变粗而消失。铸件仍继续冷却,当薄厚壁部分进入弹性区时,由于厚壁部分温度高,收缩量大。但薄壁部分阻止厚壁部分收缩,故薄壁受压应力,厚壁受拉应力。应力方向发生了变化。这种作用一直持续到室温,结果在常温下厚壁部分受拉应力,薄壁部分受压应力。这个应力是由于各部分薄厚不同。冷却速度不同,塑性变形不均匀而产生的,叫热应力。
在导轨或侧壁的同一个截面内,表层与内心部,由于冷却快慢不同,也产生相互平衡拉压的应力,用类似与上述方法分析,可知在室温下表层受压应力,心部受拉应力,并且截面越大,应力越大,此应力也叫热应力。
(2)相变应力
常用的铸铁含碳量在2.8-3.5%,属于亚共晶铸铁,由结晶 过程可知①:厚壁部分在1153℃共晶结晶时,析出共晶石墨,产生体积 膨胀 ,薄壁部分阻碍 其膨张,厚壁部分受压应力,薄壁部分受拉应力,薄辟部分受拉应力。厚壁部分因温度高,降温速度快,收缩快,所以厚壁逐渐变为受拉应力。而薄壁与其相反。在共析(738℃)前的收缩中,薄厚壁均处于朔形状态,应力虽然不段产生? 但又不断被塑性变性所松弛,应力并不大。当降到738℃时,铸铁发生共析转变,由面心立方,变为体心立方结构(既γ-Fe变为a-Fe),比容由0.124cm3/g增大到0.127cm3/g2。同时有共析石墨析出,使厚壁部分伸入,产生压应力。上述的两种应力,是在1153℃ 和738℃两次相变而产生的,叫相变应力。相变应力与冷却过程中产生的热应力方向相反? 相变应力被热应力抵消。在共析转变以后,不在产生相变些力,因此铸件由与薄厚冷却速度不同所形成的热应力起去起主要作用。
(3)收缩应力(亦叫机械阻碍应力):
铸件在固态收缩时,因受到铸型.型芯.浇冒口等的阻碍作用而产生的应力叫收缩应力。由于各部分由塑性到弹性状态转变有先有后,型芯等对收缩的阻力将在铸件内造成不均匀的的塑性变形,产生残余应力。收缩应力一般不大,多在打箱后消失。
(4)残余应力的分类残余应力的分类有许多种③,如:
a)按应力产生的原因,有热应力.相变应力.收缩应力。详细内容如上所述。
b)按应力方向分有拉应力(力的方向向背的应力),压应力(力的方向相同的应力)。
c)按影响区域的大小分有:
第一类应力,亦叫宏观应力。它是存在与整个体积或较大尺寸范围内并保持平衡的应力? 如沿机床床身导轨纵向分布的拉应力和沿侧臂分布的压应力等。
第二类应力,亦叫微观应力。它是存在与一个晶粒或几个晶粒内,并保持平衡的应力。 例如:晶粒1.2.3.4.5同处拉应力的应力场中,应力大小为σ。从金属物理④可知:各个 晶粒所受的切应力与取向因子成正比。假设晶粒1的取向因子最大,则晶粒1切应力最大? 若此切应力略大于临界内应力,则晶粒1产生塑性变性。其与个晶粒处于弹性状态。 当应力σ除掉后,晶粒2.3.4.5均为回复到原状态,但晶粒1产生塑性伸长,不能恢复到 原状态,阻碍2.3.4.5晶粒回复,结果晶粒1受拉应力。其余各晶粒受拉应力。这种在几 个晶粒间存在并保持平衡的应力,称为第二类残余应力。
第三类应力,亦叫超微观应力。它是存在与几个原子或几千个原子内并保持平衡的应力。 例如,间隙原子与溶剂原子间存在的应力。
d)按应力在工件中存在和作用的时间长短可分为:
临时应力,所产生应力的条件消失后,应力也随之消失。
残余应力,亦叫残留应力或内应力。产生应力的条件消失后,应力依然存在于工件不同 部位的应力叫残余应力。如热应力.相变内力.收缩应力等,都是残余应力。
上述分类法,亦适用于焊接件、锻件等。
2.焊接应力的产生:
焊接中.焊缝处温度迅速升高,体积膨胀。热影响区温度低,阻碍焊 缝膨胀,结果焊缝处产生压应力,热影响区产生拉应力。热影响区产生拉应力。但此 时焊缝处于塑性状态,焊缝被压应力墩粗,松弛了此应力。
焊后冷却后,热影响区冷却速度快,很快进入弹性状态,焊缝处温度高,处于塑性状态。这是焊缝收缩,较热影响区收缩慢,焊缝阻碍热影响区收缩,焊缝仍受压应力,影响区受拉应力。但焊缝处于塑性状态,焊缝的塑性墩粗,松弛了此应力。
热影响区温度不断降低,冷却速度也变慢,当焊缝的冷却速度高于热影响区时,焊 缝收缩较快,焊缝的收缩受到热影响区阻碍,应力方向发生了转变:焊缝受拉应力,热 影响区受压应力。当焊缝和热影响区都进入弹性状态时,因焊缝温度高,冷却速度快, 收缩量大,热影响温度低,冷却速度低,收缩量小,焊缝收缩受到热影响区阻碍,结果 焊缝受拉应力,热影响区受压应力。此时没有塑性变形,这一对压应力,随着温度的降 低,焊缝收缩受阻碍越来越大,拉应力也越来越大,直至室温,拉应力可近似于屈服极 限。
综上所述,铸造.锻造.焊接等都必然产生残余应力。焊件沿焊缝纵向分布着近似于屈服 点的拉应力。而铸铁件由于石墨尖端的松弛,残余应力不高,其铸造应力范围列与表一。
各种铸铁件的铸造应力单位:N/mm2
铸铁种类 灰铸铁 合金铸铁 蠕虫状石墨铸铁 球墨铸铁
残余应力 52.3 106.3 127-137.3 180
二.时效方法简介
构件在冷热加工过程中,必然产生残余应力,因此消除残余应力的时效工序就十分必要了。
凡是能降低残余应力,使工件尺寸精度稳定的方法都叫"时效"。
时效方法有:热时效.振动时效.自然时效.静态过载时效.热冲击时效等。后两种方法应用少不再讲述。