残余应力的产生和时效方法

   2016-05-05 互联网佚名6030


1.自然时效

自然时效是最古老的时效方法。它是把构件露天放置于室外,经过几个月至几年的风吹. 日晒.雨淋.和季节的温度变化,给构件多次造成反复的温度应力。再温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。

自然时效降低的残余应力不大,但对工件尺寸稳定性很好,原因是工件经过长时间的放置,石墨尖端及其他线缺陷尖端附近产生应力集中,发生了塑性变形,松弛了应力,同时也强化了这部分基体,于是该处的松弛刚度也提高了,增加了这部分材质的抗变形能力,自然时效降低了少量残余应力,却提高了构件的松弛刚度,对构件的尺寸稳定性较好,方法简单易行,但生产周期长.占用场地大,不易管理,不能及时发现构件内的缺陷,已逐渐被淘汰。

2.热时效

热时效是将构件由室温缓慢.均匀加热至550℃左右,保温4-8小时,再严格控制降温速度至150℃以下出炉。

热时效工艺要求是严格的,如要求炉内温差不大于±25℃,升温速度不大于50℃/小时,降温速度不大于20℃/小时。炉内最高温度不许超过570℃,保温时间也不易过长,如果温度高于570℃,保温时间过长,会引起石墨化,构件强度降低。如果升温速度过快,构件在升温中薄壁处升温速度比厚壁处快的多,构件各部分的温差急剧增大,会造成附加温度应力。如果附加应力与构件本身的残余应力叠加超过强度极限,就会造成构件开裂。

热时效如果降温不当,会使时效效果大为降低,甚至产生与原残余应力相同的温度应力(二次应力),并残留在构件中,从而破坏了已取得的热时效效果。

降温速度对消除残余应力的影响
降低温度速度℃/小时 残余应力消除的百分数(%)
130 6-27
50 40-50
30 60-85
注:炉内温度差不大于25℃

热时效存在的问题:

1) 建窑占地面积大,费用高(每立方米1-1.2万元)。
2) 热时效能耗高,生产成本高。
3) 热时效炉内温度不均匀,升降温速度无法严格控制。

热时效工件在炉内不同位置消除应力的测试结果
序号 工件在炉内的位置 残余应力的大小 (kgf/mm2)
时效前 时效后 应力消除的百分比( % )
σ1σ2σ1σ2σ1σ2σ1σ2平均
1 炉前段10.4 7.9 6.6 6.2 36.7 21.4 29.1
2 炉中部10.4 7.9 5.1 1.6 51.2 79.6 65.4
3 炉门处10.4 7.9 9.1 8.1 12.6 -2.4 5.1

可见:同一炉内,热时效消除应力不均匀。

4) 热时效劳动强度大,污染严重,目前大部已被振动时效代替。

三.振动时效

振动时效是"锤击松弛法"(敲击时效)的发展。可用木锤.橡皮锤.紫铜锤等,敲构件的合适部位,可激起构件共振。如用拾振器.测振仪和光线示波器可记录下构件作自由衰减振动的振型。

其衰减振型的解析式为:

X=Ae゛cosωt

A:敲击后的振幅幅值。
a:衰减系数。
ω:构件的固有频率。
t:时间

锤击松弛法是给工件一个冲击力,击起工件的响应,工件以自己的固有频率和迅速衰减的振幅作减幅振动。敲击后的最初振幅大,在构件内引起的"振动力"也大。这一振动力 多次反复作用,当它与残余应力迭加时 ,在应力集中处超过材料的屈服极限σ.,引起局部塑性边性变形,松弛了应力,使应力峰值降低。

锤击松弛法,是敲击后的"大振幅" 对时效起作用。于是人们得到启迪:为什么用一激振力,激起构件的响应,并在大振幅下持续振动一定时间,使工件内的"振动力"与残余应力迭加,在应力集中处引起塑性变形而松弛应力?在此思想下产生了振动时效技术。

振动时效,在国外称之为"V.S.R"技术,它是Vibratory Stress Reliele的缩写。它 是在激振器的周期性外力(激振力 )的作用下,使构件共振,进而松弛残余应力,提高构件的松弛刚度,使其尺寸稳定的方法。振动时效是热时效的补充和发展,可在很大范围内代替热时效。原机电部等六个部委将振动时效定为第七个五年计化间推广的节能项目,并将此类产品定位替代进口产品。目前我们的HRFvsr2000a智能型谐波振动时效设备已经达到国际先进水平,国家环保总局将振动时效装置定为节能产品。

 
举报收藏 0打赏 0评论 0
点击排行