RP技术发展到今天,其发展重心已从快速原型(RP)向快速制造(RM-Rapid Manufacturing)及金属零部件的快速制造方向转移,RP领域各种各样的新材料及新工艺不断出现。RP技术不仅应用于设计过程,而且也延伸到制造领域。在制造业中,限制产品推向市场时间的主要因素是模具及模型的设计制造时间,RP是快速设计的辅助手段,而更多的厂家则希望直接从CAD数据制成模具或产品,所以RM技术就尤为令人关注。
RP技术与铸造工艺结合产生的快速铸造(QC-Quick Casting),是RM的主要研究领域之一。近几年来,利用快速成形的离散/堆积原理发展起来的直接铸型制造技术,省去了传统工艺的模型,按照铸型CAD模型(包括浇注系统等工艺信息)的几何信息精确控制造型材料的堆积过程,直接制造铸型,是传统铸造过程的重大变革。由清华大学研制成功的PCM(Patternless Casting Modeling)工艺,是将RP理论引进到树脂砂造型工艺中,采用轮廓扫描喷射固化工艺,实现了无模型铸型的快速制造。
PCM工艺是一个包含CAD/CAM、数控、材料、喷射、工艺参数设置及后处理的集成制造过程,可概括为以下3个过程:
(1)前处理过程:首先规划和设计铸型,即确定工艺参数、选取最优加工方向、设计浇注系统等,将产品/零件的CAD模型转换成铸型的CAD模型。然后由铸型CAD数据得到分层截面轮廓数据,再以层面信息产生控制信息。
(2)造型过程:原砂存储及铺砂机构将原砂均匀铺撒在砂箱表面并由压滚压实,喷射装置将树脂和固化剂喷射在每一层铺好压实的型砂上,粘结剂与催化剂发生胶联反应,粘接剂和催化剂共同作用的地方型砂被固化在一起,其他地方型砂仍为颗粒态干砂。固化完一层后再粘接下一层,所有层面粘接完之后就可以得到一个三维实体铸型。
(3)后处理过程:清理出铸型中间未固化的干砂就可以得到一个有一定壁厚的铸型,在砂型的内表面涂敷或浸渍涂料。
在PCM工艺的研究过程中,发现PCM成形件的精度和表面质量问题日益突出,并与PCM工艺三个过程密切相关,每一过程的各环节都可能引起这样或那样的误差,这些误差会严重损害PCM成形件的精度和表面质量,并阻碍它的进一步应用。为探讨并解决这一问题,本文对影响PCM成形件的精度和表面质量的主要因素进行了分析和探讨。
1 分析与讨论
对于给定的设备硬件及软件结构的快速成形系统,机械系统的运动精度已基本确定,STL格式文件对CAD模型近似表达导致的误差在此也不作讨论,重点通过优化铸型CAD模型、正确选择原材料和喷射方式、合理确定各项工艺过程的控制参数和合适的匹配关系,大幅度提高成形件的精度和改善表面质量。
1.1 CAD模型
在PCM工艺中,分层堆积过程是由铸型CAD模型产生的控制信息驱动的,铸型CAD模型是无模样铸型制造工艺实现的基础,零件的定向和摆放对铸型成形过程的正常进行、成形精度和表面质量、加工时间等均有较大影响。为了提高成形精度及零件表面质量,减少加工时间,必须进行PCM工艺规划和铸型设计,即确定工艺参数、选取最优加工方向、设计浇注系统等,将产品/零件的CAD模型转换成铸型的CAD模型。
成形件加工方向优化是基于离散/堆积成形原理的快速原型技术工艺设计的重要研究课题之一。也是PCM工艺中对精度和表面质量影响最大因素之一,因现有的离散/堆积成形工艺产生“台阶面”的特点,难以生产出工业上所需的高精度成形件,这也是RP技术今后要解决的一大关键课题。加工精度主要体现在零件表面的台阶区面积,面内的加工精度及加工方向的尺寸精度等。除台阶区面积外,面内加工精度及加工方向的尺寸精度与加工方向的关系不大,因此,在确定最优加工方向时,只需考虑台阶区面积的大小即可。因此将以加工精度和加工时间为主要目标进行加工方向的优化。
为了实现上述目标,在建立目标函数时,必须综合考虑下述几个方面的因素,即:
·使垂直面的数量最大;
·使法向向上的水平面最大;
·使加工基面的面积最大;
·使法向向下的水平面最小;
·使斜面的数量最小;
·使总的分层数量最小。
PCM工艺的加工方向优化算法,采用以加工精度为主要因素同时考虑加工时间的多目标函数法为宜,同时结合PCM工艺,提出了更为实用、简单的目标函数:
Q=min(Qi) (i=1,2,...,m) (2-1)
Qi为第i个加工方向的目标值,以此加工方向下的相对误差值计算,假设有m个加工方向可选。
( j =1,2,...,n ; i=1,2,...,m) (2-2)[/ALIGN]式中: Wij--在第i种加工方向下,分配给第j个面片的误差权重向量,也就是该面片的单位法矢量在加工方向i上的投影;
k――是一个小于1的常量系数,随误差模型不同而异;
Aj--第j个面片的面积;
d--分层厚度;
n--面片数量。
权重系数体现了曲面类型对成形精度的影响程度。对于PCM工艺来说,垂直面与法向向上的水平面可获得最高的成形精度,而斜平面及曲面则相对较差,下水平面由于是树脂固化剂渗透形成的自由表面,成形精度和表面质量最差。其对加工精度的影响将视曲面法向与加工方向的夹角βij的大小不同而不同。
(2-3)[/ALIGN]曲面类型是影响“台阶区”投影面积的主要因素。完全水平和垂直的平面在零件中不多见,大部分的面可能是斜面,柱曲或自由曲面等。这些曲面一般用一系列小曲面片来表示,因此上述算法也可以推广到这些小曲面上。设参数空间上的自由曲面可用一系列曲面片表示。设每一小面片的曲面类型按公式(2-3)计算。
权重系数的精度可由曲面片的数量进行控制。曲面片数量越多,则权重系数的确定越准确,目标值的计算也越精确。计算多个可选加工方向下的Q值并用一维优化方法分析,Q值最小的方向就是精度最高的加工方向。
对于结构形状复杂的零件,若采用一体化成形,即使采用以上的优化算法,也很难避免斜平面、曲面及下水平面,可采用分解铸型分别按最优化方向制造,最后将铸型组合的方法,可获得更高的成形精度和表面质量。实验证明,这也是提高铸型整体精度和表面质量行之有效的方法。
1.2 原材料的物理特性