PCM快速成形工艺精度和表面质量影响因素

   2016-05-05 互联网佚名3880


因此,要保证扫描速度与喷射流量匹配,首先,必须保证扫描速度与液体工作压力相匹配;其次,单元体存在最佳固化含量,固化含量过大则发气量偏大,过小则单元体尺寸形态不稳定。因而,扫描速度与工作压力之间也存在一个最佳比率(对应最佳固化含量),必须通过实验测定;另外,粘接剂和催化剂在流量公式中的流量系数不同,两者在单元体中的固化含量也不相等,需要分别测定该比率。

大量实验表明,扫描速度确定为350mm/s时,两者的最佳比率分别约为900 mm/(s·Mpa)和1750mm/(s·Mpa)。此时,两者对应的最佳固化含量分别为9.4%和4.7%,含量之比满足PCM工艺要求的2:1。

另外,扫描速度和喷射流量保持匹配的前提下,两者的变化范围都受到一定限制。前者主要是受电机驱动能力和机械系统惯性的制约,存在最大扫描速度;后者则主要由减压装置的分辨率、喷头喷嘴大小及喷射压力阈值决定,存在最小喷射流量。为减少铸型在浇注过程中的发气量,确定扫描速度与喷射流量的匹配关系为,最小喷射流量与最大扫描速度的匹配。

●分层厚度与型砂粒度的匹配

实验发现,粘接剂液体的渗透扩散形态和单元体尺寸与型砂粒度也有较大关系。型砂粒度越小,彼此间的空隙就越小,毛细管组成的三维网络对液体渗透扩散的阻力就越大,扩散现象较为规则,单元体尺寸也较小。

造型过程中,必须保证层与层既能顺利粘接,相互之间又不会过度渗透。因此,与型砂粒度对应的单元体厚度应该略大于分层厚度;如果单元体截面厚度远远超过一个层厚,不仅引起层与层之间的相互渗透,而且当前层内的横向扩散也趋于严重。横向和纵向的过度渗透导致铸型表面异常粗糙,轮廓的形状精度和几何尺寸无法保证。

因此,必须保证分层厚度和型砂粒度之间的匹配。型砂粒度越大,单元体尺寸就越大,则分层厚度也须相应增大;反之则可以减小。

●分层厚度与喷射流量的匹配

在扫描速度确定的前提下,分层厚度和喷射流量之间也存在匹配关系。喷射流量越大,单元体固化含量就越高,扩散现象也越严重,单元体尺寸增大,因此分层厚度须相应增大;反之则可以减小。为提高成形件的精度,应采用最小的喷射流量实验得出最小扫描线宽时的分层厚度值与之匹配。

实际上,各工艺参数之间的匹配并非单一的对应关系,而是相互关联、相互影响、相互制约的。在扫描速度、喷射流量、型砂粒度和分层厚度四个参数中,任意固定其中几个参数,则其余各参数之间都存在着确定的函数关系。例如:扫描速度固定时,喷射流量和型砂粒度增大,分层厚度就必须增大;而喷射流量和型砂粒度固定时,扫描速度增大,分层厚度就必须减小。依次类推,可以得到其它所有匹配关系。

2 结论

经过上述讨论可知:组成整个工艺过程的各个部分均对成形件的误差有所影响,采用以加工精度为主要因素同时考虑加工时间的多目标函数法优化成形件加工方向;选择粒度较细的原砂和粘度较低的树脂与固化剂;采用树脂和固化剂同时喷射的方式;合理确定扫描速度、喷射流量、型砂粒度、分层厚度和偏置距离等各项工艺参数和合适的匹配关系;可以大幅度提高成形件的精度和改善表面质量,满足铸造对PCM工艺铸型的要求,实现各种金属零件的无模型快速制造。


 
举报收藏 0打赏 0评论 0
点击排行