PCM快速成形工艺精度和表面质量影响因素

   2016-05-05 互联网佚名3880


原砂的粒度、树脂和固化剂的粘度也是影响PCM成形件的重要因素。原砂的粒度的粗细造成的砂粒比表面积的差异,会直接影响渗透单元体的大小,从而影响扫描线宽;树脂固化剂的粘度也因与原砂表面的浸润性能差异,影响渗透和扫描线宽。实验发现,当粘度过高时,树脂和固化剂液流喷到原砂表面不润湿而成为断续的液珠,渗透后造成扫描线的粗细不均甚至不连续形成节瘤和空缺。另外,原砂的粒度分布、粒形、含泥量也会因影响渗透而影响成形件的精度和表面质量。

1.3 喷射形式

用小三角形面片化的三维模型通过分层切片处理后,产生的层片文件其轮廓线为零宽度。然而在加工过程中,喷头喷出的液流在成形表面渗透形成的扫描线是有一定宽度的。虽然从理论上讲,可以在工艺控制软件中通过理论轮廓线的补偿而形成实际加工轮廓线来消除此种误差。但扫描线宽在加工过程中则会随着扫描速度、喷射压力、树脂和固化剂粘度、环境温度等因素的变化而变化。另外,由于喷头的开关控制采用电磁阀,存在一个速度响应的问题,使得在成形件上要么会积累成节瘤,要么会形成空缺。所有这些都会造成成形件的误差。

喷射方式的不同也会对成形件的精度造成较大的影响。采用树脂和固化剂的顺序喷射,先喷射的液体会在原砂中自由扩散渗透,后喷射的液体的扩散受到快速固化的阻碍作用而处于先喷射液体扩散区域之内,由此形成的固化线宽较宽,且外表面有一层只含有一种组分的粘附层,不仅影响精度和表面质量,还为后续的处理带来不便。采用树脂和固化剂同时喷射,两股液流混合后迅速到达原砂表面,渗透扩散与固化反应同时进行,两组分的快速固化制约了扩散,从而可减少扫描线宽,提高精度和表面质量。

1.4 工艺参数

在PCM工艺实验研究中,需要通过大量实验确定适合造型的最佳工艺参数。其中,分层厚度、偏置距离(填充网格间距)是根据单元体最佳粘接形式来确定的。因此,影响单元体尺寸形态和成形精度的两个主要工艺参数就是扫描速度和喷头流量。

造型时,根据单元体固化含量确定喷头流量,将粘接剂和催化剂的工作压力调节到适当状态,在对应的工作压力下获得各自需要的流量。但是,流量的可调节范围受喷头和流体输送系统的限制较大。比较容易控制的参数是扫描速度。

结合实验观察和实验结果分析,可以得出以下结论:

(1)铸型强度随分层厚度和偏置距离(网格间距)减小而增大,前者影响更加显著;
(2)分层厚度对铸型表面质量的影响较大,偏置距离(网格间距)则影响较小。表面质量随分层厚度减小而达到峰值,继续减小时表面质量开始下降,结瘤增多,粗糙度上升。分析原因,是由于分层厚度较大时,分层厚度的减小弱化了单元体纵向粘接时铸型侧面轮廓的“锯齿现象”,从而提高了铸型的表面质量,如图1(a)和(b)所示;而分层厚度较小时,继续减小则导致单元体固化时粘接剂液体的横向扩散加剧,反而降低了铸型的表面质量,如图1(c)所示。同样,偏置距离(网格间距)过小时也会因横向扩散加剧而降低铸型的表面质量。因此,必须在保证铸型必要强度的前提下,选择适合的分层厚度和偏置距离(网格间距),使铸型的表面质量达到最佳。


(a)分层厚度较大时 (b) 分层厚度适合时 (c)分层厚度过小时
图1 分层厚度对铸型表面质量的影响[/ALIGN](3)扫描速度一定时,铸型的表面质量在某一中间条件下达到最佳。此时,分层厚度与该扫描速度下自由渗透形成的单元体固化厚度的比值h:r≈2:3,偏置距离(或网格间距)与固化线宽的比值d:b≈2:3,如图2所示。测量数据表明,在这一条件下,铸型强度也完全满足要求。因此,上述参数就是这一扫描速度下的最优造型参数。


(a)自由渗透单元体 (b) h:r≈2:3 (c)d:b≈2:3
图2 最优造型参数示意图[/ALIGN](4)上述比例关系不随扫描速度变化而变化。

在实际造型过程中,必须通过实验确定具体的最优造型参数。具体步骤如下:

(1)根据X-Y扫描系统的负载能力和稳定性确定扫描速度;
(2)以该扫描速度进行直线扫描实验,测量自由渗透单元体的固化厚度和固化线宽; 依据上述结论计算出相应条件下的分层厚度h和偏置距离d(网格间距)。

1.5 造型工艺参数匹配

RP工艺的成形精度除了取决于机械系统的运动精度和基本成形单元体的形态尺寸外,造型工艺参数之间的匹配程度也会对成形精度产生重要影响。

在PCM工艺中,最重要的几个工艺参数包括:扫描速度、喷射流量、型砂粒度和分层厚度等。他们之间的匹配会直接影响凝聚单元体的尺寸及其形态,进而对成形精度产生影响。因此,下面对上述参数之间的匹配关系进行分析和研究。

●扫描速度与喷射流量的匹配

PCM工艺制造的铸型从功能上看不仅要具备可铸造性,而且要达到一定的外形精度,包括形状精度、尺寸精度和表面精度。这种工艺是由面到体的堆积过程,所以凝聚单元体的尺寸和形态是否均匀一致,将是决定铸型几何精度的重要因素。

在扫描加工过程中,扫描方向虽然在变化,但扫描速度不变。为保证凝聚单元体的尺寸形态均匀一致,液体的固化含量必须保持恒定;在喷头流量恒定的情况下,实验得出单元体尺寸和粘接剂含量随扫描速度的变化曲线如图3和图4所示。


图3 单元体尺寸和扫描速度的关系[/ALIGN]


图4 单元体粘接剂含量和扫描速度的关系[/ALIGN]从图4中可以看出,喷射流量确定时,固化含量随扫描速度增大而减小。因此,要保证固化含 量不变,就必须在扫描速度增大(减小)时增大(减小)喷射流量。

在PCM工艺中,喷头以开闭方式来决定液体喷射与否,本身并不对液体产生驱动力。液体喷射的驱动力来自气瓶内的压缩气体,由高压气体经减压而得。根据伯努利方程可得流量:

(2-4)[/ALIGN]式中:
Q--单位时间内的粘接剂流量;
K-- 流量系数,,其中g是重力加速度,ρ是粘接剂密度,Ax是喷嘴截面积。当喷头结构和粘结剂类型一定时该值不变;
∆--是流体的压差;

从公式(2-4)可知,喷射流量Q与工作压力的开方成正比关系,改变工作压力可以使喷射流量发生相应变化。

 
举报收藏 0打赏 0评论 0
点击排行