复合材料车身的出现,是车辆轻量化的有效途径。以厚为1.4mmQ235 钢板与0.8mm的DP590轻量化钢板组成的接头为研究对象,运用ANSYS软件, 采用有限元分析的方法,获得工艺参数与点焊质量的关系,得到减小熔核偏移,保证接头的承载能力的途径。
1熔核形貌的几何描述
描述熔核形貌的几何参数有:熔核直径、熔透率、熔核高度、熔核偏移等几种。为表述熔核形貌变化,用熔核直径对熔核成形进行表述。即熔核尺寸越大,接头的承载能力越强,反之越弱[1]。焊接电流、通电时间是决定熔核尺寸与熔核偏移的主要因素,电极压力等属于相对次要的因素[2]。接头结构见图1。D为熔核直径、H与h为熔深。
点焊是轴对称有限元模型。单元类型选择热电耦合单元PLANE67,该单元具有电压与温度两个自由度,可以顺利实现点焊热电耦合分析。网格划分遵循的原则是:在接触区域,温度场与电场变化复杂且迅速,网格要细分,为了提高计算效率,其它区域网格需粗划。边界条件的处理与等厚板的点焊接头类似,相关材料参数可以查阅文献获得[3-4]。有限元模型与边界条件分别如图2(a)、(b)所示。点焊边界热作用形式是对流换热与辐射换热。边界③是电极与冷却水的作用, 考虑为强制对流换热,对流换热系数为3800W/(M2·℃)。边界④是电极与空气作用的表面,存在对流、辐射作用,其热交换效果用综合换热系数αw来表示。上下边界①、②耦合电压, 确保电流能够导通。
本文的计算条件是:F=3500N,通电时间t=0.25s,焊接电流分别为6kA、6.6kA、7.5kA,其温度场的模拟结果如图3(a)、(b)、(c)所示。
比较I=6.6kA,t=0.25s、I=10kA,t=0.2s的熔核偏移量,以贴合面与熔核中心线的距离为依据。如图5所示。
5结束语
5.1 通电时间不变时,熔核直径随着载荷电流的增加而增大,只要电极温度达不到熔点即可。
5.2 针对熔核偏移问题,本文获得以下结论:采用硬规范,即采用大载荷电流,短的通电时间,可以减小熔核偏移。这个结论与书中记载相同,说明本文模拟的合理性。
5.3 本文所述的接头的点焊工艺参数:可以考虑t=0.25s、I=6.6kA,与t=0.25s、I=7.5kA这两组,但考虑到熔核偏移的问题,建议采用I=10kA、t=0.2s这组,因为这组参数计算得到的熔核直径与薄板电极温度都满足要求,且熔核偏移量很小。
参考文献
[1] Zhou M, Zhang H, HuSJ. Relationships between quality and attributes of spot welds[ J] . Welding Journa1,2003, 82(4): 72s~77s.
[2] 罗怡. 非等厚异种钢熔核形成过程多远线性回归模型. 焊接学报,Vol 31(11).
[3] 李茹娟. 低碳钢电阻点焊过程有限元分析. 合肥工业大学硕士学位论文[D].
[4] 王敏. Dp590双相钢熔核形成过程数值模拟. 上海交通大学学报, 2009.Vol 43(1).
[5] 王慧越. 双相钢电阻点焊接头断裂形式. 焊接实验研究, 2007.(7).