目前,国内外对烟气脱硫吸收塔进行大量研究,主要采用实验方法,如研究塔的阻力特性、液滴运动速度沿塔高变化和TCA塔内温度场分布等,这些研究对指导工业应用具有重要意义,但其结果往往只针对特定的设备或结构,具有较大的局限性.随着计算机技术的迅速发展,计算流体力学(Computational Fluid Dynamic,CFD)已成为研究三维流动的重要方法:周山明等[4]利用FLUENT计算空塔和喷淋状态下的塔热态流场,结果表明脱硫吸收塔入口处流场变化最剧烈、压降损失最大,并根据计算结果改造来流烟道;孙克勤等采用混合网格和随机颗粒生成模型对烟气脱硫吸收塔的热态流场进行数值模拟;郭瑞堂等采用FLUENT结合非稳态反应传质-反应理论对湿法脱硫液柱冲击塔内的流场和SO2的吸收进行数值模拟.
本文尝试应用FLUENT对某脱硫吸收塔内烟气脱硫过程进行初步数值模拟,通过对内部流场进行分析验证本文模拟的合理性,进而对脱硫过程中脱硫吸收塔内是否存在湿壁现象进行深入分析研究.
1 基于RANS求解器的CFD数值模拟方法
1.1 控制方程
时均的不可压缩连续性方程和N-S方程(RANS方程)如下:1.2 湍流模型和多相流模型
RNGk-ε湍流模型提供针对低雷诺数有效黏性的微分解析式,具备数值稳定性好、求解压力梯度精确以及工程实用等优点,因此本文的数值计算采用RNGk-ε湍流模型.多相流模型采用欧拉模型.
1.3 边界条件
(1)入口边界条件:采用速度入口边界条件Vin=V0.
(2)出口边界条件:采用出流边界条件.
(3)物面条件:满足壁面黏附条件,壁面处流体速度与运动边界速度相同.
1.4 数值离散和求解
(1)时间项的离散:采用直接1阶隐式离散.
(2)空间项的离散:扩散项以中心差分格式进行差分,对流项采用2阶迎风格式.
采用SIMPLE法处理压力-速度耦合问题,离散方程以Gauss-Seidel迭代法求解.
2烟气脱硫数值模拟
数值模拟对象为某个用于烟气脱硫的脱硫吸收塔,配有喷枪喷射浆液用于烟气脱硫,其脱硫过程涉及浆液对烟气中有害气体的吸收、浆液中Ca(OH)2与烟气中硫化物的化学反应以及浆液的蒸发.考虑到具体计算的时间问题以及实际问题的复杂程度,本文作相应简化,不考虑浆液中Ca(OH)2与烟气中硫化物的化学反应以及实际脱硫过程中的传热蒸发.在研究浆液湿壁问题时,本文从烟气及浆液的流
动角度(速度分布)进行细致的分析研究,考虑到实际传热蒸发对烟气湿壁具有很好的抑制作用,因此本文的分析结论偏于保守可靠.
2.1数值模拟对象
吸收塔入口处烟气速度为6m/s,喷枪喷射浆液流速度为25m/s.为便于分析,建立固连于塔体的坐标系,并约定:吸收塔对称面所在的面为xOy面,z轴垂直于xOy面并满足右手法则,吸收塔模型和坐标系见图1.采用非结构网格对吸收塔内计算域进行网格划分,网格数量约为200万个.
图1 吸收塔模型和坐标系
2.2.1脱硫吸收塔内部流场分析
(1)烟气入口处速度分布均匀,稳定在6m/s左右;导流板处烟气分布较为均匀;烟气在进入喷嘴时,由于与高速浆液进行动量交换,速度迅速增加到20m/s以上,并显示出如喷枪一样的火焰状喷射轨迹,脱硫吸收塔对称面内烟气速度云图见图2;脱硫吸收塔内广大区域速度较小,根据连续性方程,出口处速度应较大,从图2中亦能看到剧增的出口速度.(2)喷枪处浆液速度云图见图3,显示出与实际情况相符的火焰状轮廓,在进入脱硫吸收塔内后,由于与烟气混合在一起,脱硫吸收塔内的浆液速度分布几乎与烟气一致.(3)进一步将脱硫吸收塔内流线示意绘出,见图4,可知脱硫吸收塔内烟气流动非常复杂,烟气在刚进入脱硫吸收塔内时流动均匀;而后进入主塔体时形成一对反向旋转的涡对,左边的很大,右边的相比之下较小但强度很强,并分别向上和向下卷曲延伸.导流板处及其上表面均无涡旋,只在趋于主塔体处形成较强的一次涡和二次分离涡.
图2 对称面内烟气速度云图 图3 对称面内浆液速度云图
图4 吸收塔内部流线示意
(1)浆液喷射轮廓大于烟气,接近实际喷枪,喷射角度近60°,参与烟气流动,在脱硫吸收塔内形成涡旋.
(2)3组喷枪所在区域的浆液与空气流场完全一致,选取对称面进行流线分析,绘出浆液空气流线图.因tecplot中流线是起点式绘制,而喷枪出口轮廓的起点皆为分离点,故起点处流线也各个分离,喷枪所在位置处速度云图和流线示意见图5.
图5 喷枪所在位置处速度云图和流线示意
综上所述,从脱硫吸收塔整体及喷枪局部速度云图和流线可知,FLUENT具备较好的模拟脱硫吸收塔在脱硫过程中烟气和浆液流动的能力.
2.3 湿壁情况分析
进一步选取较小速度比例给出壁面浆液速度云图,以分析可能的浆液湿壁现象,图6~9为中间喷枪和左右2个喷枪在yOz面内和相应xOz面内的速度云图.由图6和7可知,左右2个喷枪喷出的浆液流贴近近壁面.进一步截取浆液速度剖面进行分析,在近最大轮廓面及以下1.5m处截取剖面并精细显示速度云图,见图8和9.可知,左右2个喷枪喷射的浆液流速度在近壁面处达到3~6m/s,而从整体流线图看出塔内存在涡旋,考虑到实际喷枪出流速度大于25m/s时将会使火焰喷射轮廓更大进而射到塔壁上,因此该脱硫吸收塔的设计方案有可能出现湿壁现象.建议将左右喷枪挪向中部,并收缩喷枪所在管道直径,增加喷枪数量.3 结论
基于商业软件FLUENT采用多相流模型针对脱硫吸收塔内烟气脱硫过程进行初步模拟,建立基于RANS方程的烟气脱硫多相流数值模拟方法.通过对脱硫吸收塔内部和喷枪局部处流场进行分析,模拟得到浆液和烟气在脱硫吸收塔内的流动规律.从模拟结果看,本文建立的方法可行.通过对可能的浆液湿壁现象进行分析,认为此种脱硫吸收塔的设计方案有可能出现湿壁现象,建议将左右喷枪挪向中部,并且收缩喷枪所在管道直径,增加喷枪数量.下一步工作将在给定的喷枪速度范围内进行系列计算,综合比较给定湿壁影响区域,为施工设计提供参考;同时,也考虑在进一步的深入计算中加入传热蒸发模型.