听力损失的情况并不少见:约3600 万,即17% 美国成人报告有一定程度上的听力损失。中度到中度的听力损失可以利用助听器进行处理。但是,传统的助听器对于超过一定级别的听力损失却无法提供解决方案。在这种情况下,如骨传导植入物或者人工耳蜗这类型的听力植入物也许不失为一个好方案。
总部位于澳大利亚的科利耳公司,占据了这类型植入物市场的四分之三份额,多年来为分布于超过100 个国家的250,000 人服务。该公司目前正致力于为客户提供更多的解决方案。在2012 年,该公司收入的15%投资于研究开发,而它的年销售额达到约7.8 亿澳元(2012 年)。
无线植入式驱动器
“这个Codacs 系统,”Kennes 解释说,“是由BTE(behind the ear,耳后)的装置启动的。这个BTE 装置具有与外耳相似的机能:拾音。这个装置包含了电池,两个专为定向听力设置的麦克风以及一些数字信号处理电路。信号会通过无线链路发送到植入在外耳道后面的耳甲腔的驱动器(见图一)。该链路不再需要通过皮肤来给电缆提供数据,而且还能够在不需要电池的情况下为植入装置提供电源。”
利用Codacs 系统,一个微型的驱动器可在耳蜗流体内产生放大的压力波,从而物理上地增强声能以补偿听力损失。为了达到这个目的,位于驱动器末端的人工砧骨要连接突出到耳蜗的人工镫骨。活塞状人工镫骨的震动会引起耳蜗流体里面的压力变化,其方式与听小骨的运动方式非常相像。
驱动器的设计挑战
Codacs 驱动器是一个基于平衡电枢原理的电磁转换器(见图1)。当电枢处于两块永久磁铁的中点时,它对两块磁铁的吸引力是一样的,因此没有施加任何净磁力。然而,电枢一旦移动到中点之外的地方,电枢与两块磁铁间的距离以及它向它们所施加的力,都不再是平等的了:电枢会被最近的一块磁铁所吸引。这也被称为负弹簧刚度,因为它与正常弹簧结构所发生的情形是相反的:如果你让弹簧变形,它往往会恢复到它原来的位置。对于Codacs 驱动器来说,隔膜就充当了一个复位弹簧的角色,防止驱动器粘住磁铁。隔膜力和磁体力之间的精确平衡对驱动器的正常工作来说是不可缺少的:举个例子,当膜片刚度太低的时候,气隙会塌陷,电枢会粘在其中一块磁铁上。给线圈供电可以调整磁场,促使电枢向一个或两个磁铁运动。
根据Kennes 所说,“最初的概念可以追溯到七年前,我们在设计过程中的每一个阶段都广泛使用COMSOL。最初的想法是要建立一个用来产生振动的小型驱动器,但是我们并不知道一些关键元件的最小尺寸。因此第一个COMSOL 模型单纯是用来帮助我们比较不同概念的可行性研究。”
一旦这个概念被选中,研究人员便进入原型定做阶段, 在这个阶段他们会确定部件的精确尺寸与形状。设计师必须记住几个要素,特别是由于乳突腔的空间有限,所以物体的直径必须<4 毫米,长度必须<15 毫米。驱动器必须提供一个与人耳相似的频率特性(共振频率接近1kHz)。设计师还要把功耗考虑在其中,还有驱动器与人体组织接触的部分必须是生物相容或者密封封装的。
关键的组件
一体化套装软件
让这个团队印象深刻的是COMSOL 使他们能够在一个统一套餐软件中做一系列的研究——结构、声学、电磁、压电。“只要我们有一个模型,我们不需要从画草图开始去建立另一个用不同物理学的模型。我们只需要简单地添加或者移除需要的组件,改变物理学。然后在短短的几个步骤后我们就有一个新的案例研究了。”